
Outline

 10.1 Introduction to Trees

 10.2 Applications of Trees

 10.3 Tree Traversal

 10.4 Spanning Trees

 10.5 Minimal Spanning Trees

Ch10-1

10.1 Introduction to Trees

Example 1. Which of the graphs are trees?

Def 1 A tree is a connected undirected graph with no

simple circuits.

Sol: G1, G2

Note. 若拿掉connected的條件，就變成 forest
Ch10-2

Thm 1. Any undirected graph is a tree if and only if

there is a unique simple path between any two of

its vertices.

Def 2. A rooted tree is a tree in which one vertex has

been designed as the root and every edge is

directed away from the root. (箭頭可消掉)

Example

Ch10-3

Def: a is the parent of b, b is the child of a,

c, d, e are siblings,

a, b, d are ancestors of f

c, d, e, f, g are descendants of b

c, e, f, g are leaves of the tree (deg=1)

a, b, d are internal vertices of the tree

(at least one child)

subtree with d as its root:

a

b

f

c e
d

g

f

d

g

Ch10-4

Def 3 A rooted tree is called an m-ary tree if every

internal vetex has no more than m children. The tree

is called a full m-ary tree if every internal vertex has

exactly m children. An m-ary tree with m=2 is called

a binary tree.

Example 3

full binary tree full 3-ary tree full 5-ary tree not full 3-ary tree

Ch10-5

a

e

b
c

f

Def:

left child of a

right child of c

right subtree of a

d

left subtree of a

Ch10-6

Properties of Trees

Thm 2. A tree with n vertices has n-1 edges.

Pf. (by induction on n)

n = 1 : K1 is the only tree of order 1, |E(K1)| = 0. ok!

Assume the result is true for every trees of order n = k.

Let T be a tree of order n = k+1, v be a leaf of T,

and w be the parent of v.

Let T ’ be the tree T- {v}.

∴|V(T ’)| = k, and |E(T ’)| = k-1 by the induction

hypothesis.

 |E(T)| = k

By induction, the result is true for all trees. #
Ch10-7

Thm 3. A full m-ary tree with i internal vertices

contains n = mi + 1 vertices.

Pf. Every vertex, except the root, is the child of an internal vertex.

Each internal vertex has m children.

 there are mi +1 vertices in the tree

Exercise: 19

Cor. A full m-ary tree with n vertices contains

(n-1)/m internal vertices, and hence

n - (n-1)/m = ((m-1)n+1)/m leaves.

Ch10-8

Def: The level of a vertex v in a rooted tree is the

length of the unique path from the root to this vertex.

The level of the root is defined to be zero.

The height of a rooted tree is the maximum of the

levels of vertices.

Example 10.

height = 4

level

0

1

2

3

4

Ch10-9

Def: A rooted m-ary tree of height h is balanced if all

leaves are at levels h or h-1.

Example 11 Which of the rooted trees shown below

are balanced?

Sol. T1, T3

Thm 5. There are at most mh leaves in an m-ary tree

of height h.
Ch10-10

Def: A complete m-ary tree is a full m-ary tree,

where every leaf is at the same level.

Ex 28 How many vertices and how many leaves does

a complete m-ary tree of height h have?

Sol.

of vertices = 1+m+m2+…+mh = (mh+1-1)/(m-1)

of leaves = mh

Ch10-11

10.2 Applications of Trees

Binary Search Trees

Goal: Implement a searching algorithm that finds

items efficiently when the items are totally ordered.

Binary Search Tree: Binary tree + each child of a

vertex is designed as a right or left child, and each

vertex v is labeled with a key label(v), which is one of

the items.

Note: label(v) > label(w) if w is in the left subtree of v

and label(v) < label(w) if w is in the right subtree of v

Ch10-12

Example 1 Form a binary search tree for the words

mathematics, physics, geography, zoology, meteorology,

geology, psychology, and chemistry (using alphabetical order).

Sol.

Ch10-13

Procedure insertion(T: binary search tree, x: item)

v := root of T

{a vertex not present in T has the value null}

while v  null and label(v)  x

begin

if x < label(v) then

if left child of v  null then v:=left child of v

else add new vertex as a left child of v and set v := null

else

if right child of v  null then v:= right child of v

else add new vertex as a right child of v and set v := null

end

if root of T = null then add a vertex v to the tree and label it with x

else if v is null or label(v)  x then label new vertex with x and

let v be this new vertex

{v = location of x}

Algorithm 1 (Locating and Adding Items to a Binary Search Tree.)

Ch10-14

Example 2 Use Algorithm 1 to insert the word

oceanography into the binary search tree in Example 1.

Sol.

psychology

chemistry

physics

geology

zoology

geography

mathematics

meteorology

v

label(v) = mathematics < oceanography

label(v) = physics > oceanography

label(v) = meteorology < oceanography

oceanography

Exercise: 1,3

Ch10-15

Decision Trees

A rooted tree in which each internal vertex corresponds

to a decision, with a subtree at these vertices for each

possible outcome of the decision, is called a decision

tree.

Example 3 Suppose there are seven coins, all with the

same weight, and a counterfeit (偽造) coin that weights less

than the others. How many weighings (秤重) are necessary

using a balance scale (秤) to determine which of the eight

coins is the counterfeit one? Give an algorithm for finding

this counterfeit coin.

Ch10-16

Sol. 秤重時，可能左重、右重或平衡 3-ary tree

Need 8 leaves 至少需秤重兩次

Exercise: 7

Ch10-17

Example 4 A decision tree that orders the elements of the

list a, b, c.

Sol.

Ch10-18

Prefix Codes

Problem: Using bit strings to encode the letter of the

English alphabet (不分大小寫)

 each letter needs a bit string of length 5 (因 24 < 26 < 25)

 Is it possible to find a coding scheme of these letter

such that when data are coded, fewer bits are used?

 Encode letters using varying numbers of bits.

 Some methods must be used to determine where the

bits for each character start and end.

 Prefix codes: Codes with the property that the bit string

for a letter never occurs as the first part of the bit string

for another letter.

Ch10-19

Example: (not prefix code)

e : 0, a : 1, t : 01

The string 0101 could correspond to eat, tea, eaea, or tt.

Example: (prefix code)

e : 0, a : 10, t : 11

The string 10110 is the encoding of ate.

Ch10-20

decode

11111011100

A prefix code can be represented using a binary tree.

character: the label of the leaf

edge label: left child  0, right child  1

The bit string used to encode a character is the sequence

of labels of the edges in the unique path from the root to

the leaf that has this character as its label.

Example:

encode

e : 0

a : 10

t : 110

n : 1110

s : 1111

 sane

s a n e

Exercise: 22

從root走起，到leaf為止，重複

Ch10-21

Huffman Coding (data compression重要工具)

Input the frequencies of symbols in a string and output

a prefix code that encodes the string using the fewest

possible bits, among all possible binary prefix codes for

these symbols.

一開始有很多孤立點，label就是各個symbol，
將最少使用的兩個symbol結合成一個subtree，
重複此一概念，
將最少使用的兩個subtree結合成一個subtree，…

Ch10-22

Procedure Huffman(C: symbols ai with frequencies wi, i = 1, …, n)

F := forest of n rooted trees, each consisting of the single vertex ai

and assigned weighted wi

while F is not a tree

begin

Replace the rooted trees T and T’ of least weights from F with

w(T)  w(T’) with a tree having a new root that has T as its

left subtree and T’ as its right subtree. Label the new edge to T

with 0 and the new edge to T’ with 1.

Assign w(T)+w(T’) as the weight of the new tree.

end

Algorithm 2 (Huffman Coding)

Ch10-23

Exercise : 23

Example 5 Use Huffman coding to encode the following

symbols with the frequencies listed:

A: 0.08, B: 0.10, C: 0.12, D: 0.15, E: 0.20, F: 0.35.

What is the average number of bits used to encode a

character?

Sol:

1. 下頁圖
2. The average number of bits is:

每個symbol 長度頻率的加總

= 30.08+ 30.10+ 30.12+ 30.15+20.20+20.35

=2.45

Ch10-24

Ch10-25

10.3 Tree Traversal
We need procedures for visiting each vertex of an ordered

rooted tree to access data.

Universal Address Systems

Label vertices:

1.root  0, its k children  1, 2, …, k (from left to right)

2.For each vertex v at level n with label A,

its r children  A.1, A.2, …, A.r (from left to right).

We can totally order the vertices using the lexicographic

ordering of their labels in the universal address system.

x1.x2…..xn < y1.y2…..ym

if there is an i, 0  i  n, with x1=y1, x2=y2, …, xi-1=yi-1, and xi<yi;

or if n<m and xi=yi for i=1, 2, …, n.

Ch10-26

Example 1

The lexicographic ordering is:
0 < 1<1.1 < 1.2 < 1.3 < 2 < 3 < 3.1 < 3.1.1 < 3.1.2 < 3.1.2.1 < 3.1.2.2 < 3.1.2.3 <

3.1.2.4 < 3.1.3 < 3.2 < 4 < 4.1 < 5 < 5.1 < 5.1.1 < 5.2 < 5.3

Exercise : 2 Ch10-27

Traversal Algorithms

Preorder traversal (前序)

Ch10-28

Example 2. In which order does a preorder traversal visit

the vertices in the ordered rooted tree T shown below?

Sol:

Ch10-29

Procedure preorder(T: ordered rooted tree)

r := root of T

list r

for each child c of r from left to right

begin

T(c) := subtree with c as its root

preorder(T(c))

end

Algorithm 1 (Preorder Traversal)

Ch10-30

Exercise : 8

Inorder traversal(中序)

Ch10-31

Example 3. In which order does a preorder traversal visit

the vertices in the ordered rooted tree T shown below?

Sol:

Ch10-32

Procedure inorder(T: ordered rooted tree)

r := root of T

If r is a leaf then list r

else

begin

l := first child of r from left to right

T(l) := subtree with l as its root

inorder(T(l))

list r

for each child c of r except for l from left to right

T(c) := subtree with c as its root

inorder(T(c))

end

Algorithm 2 (Inorder Traversal)

Ch10-33

Postorder traversal(後序)

Ch10-34

Example 4. In which order does a preorder traversal visit

the vertices in the ordered rooted tree T shown below?

Sol:

Ch10-35

Procedure postorder(T: ordered rooted tree)

r := root of T

for each child c of r from left to right

begin

T(c) := subtree with c as its root

postorder(T(c))

end

list r

Algorithm 3 (Postorder Traversal)

Ch10-36

比較容易的表示法：依紅線的走法拜訪節點
Preorder: curve第一次通過該點時就list該節點
Inorder: curve第一次通過一個leaf時就list它，第二次通過一個internal節點

時就list它
Postorder: curve最後一次通過該點時就list該節點

Preorder:

a, b, d, h, e, i, j, c, f, g, k

Inorder:

h, d, b, i, e, j, a, f, c, k, g

Postorder:

h, d, i, j, e, b, f, k, g, c, a

Ch10-37

Infix, Prefix, and Postfix Notation

We can represent complicated expressions, such as compound

propositions, combinations of sets, and arithmetic expressions

using ordered rooted trees.

Example 1 Find the ordered rooted tree for

((x+y)2)+((x-4)/3). (表示次方)

Sol.

leaf:

variable

internal vertex:

operation on

its left and right

subtrees

Ch10-38

The following binary trees represent the expressions:

(x+y)/(x+3), (x+(y/x))+3, x+(y/(x+3)).

All their inorder traversals lead to x+y/x+3  ambiguous

 need parentheses

Infix form: An expression obtained when we traverse its

rooted tree with inorder.

Prefix form: … … by preorder. (also named Polish notation)

Postfix form: … … by postorder. (reverse Polish notation)
Ch10-39

Sol.

x y + 2  x 4 - 3 / +

Example 6 What is the prefix form for ((x+y)2)+((x-4)/3)?

Example 8 What is the postfix form of the expression

((x+y)2)+((x-4)/3)?

Sol.

+  + x y 2 / - x 4 3

Note. An expression in prefix form or postfix form is

unambiguous, so no parentheses are needed.

Ch10-40

Example 7 What is the value of the prefix expression

+ - * 2 3 5 /  2 3 4?

Sol.

由右到左運算，將第一個出現的
運算記號(如)右邊的兩個數字
做此運算，運算結果取代原先位置，
依此類推。

Ch10-41

Example 9 What is the value of the postfix expression

7 2 3 * - 4  9 3 / +?

Sol.

由左到右運算，將第一個出現的
運算記號(如*)左邊的兩個數字
做此運算，運算結果取代原先位
置，依此類推。

Ch10-42

Example 10 Find the ordered rooted tree representing the

compound proposition ((pq))  (pq). Then use this

rooted tree to find the prefix, postfix, and infix forms of this

expression.

Sol.

prefix:    p q   p  q

postfix: p q   p  q   

infix: ((pq))  ((p)(q))

Exercise : 17, 23, 24
Ch10-43

10.4 Spanning Trees

Def. Let G be a simple graph. A spanning tree of G is a

subgraph of G that is a tree containing every vertex of G.

Introduction

Example 1 Find a spanning tree of G.

Sol.

Remove an edge from any circuit.

(repeat until no circuit exists)

Ch10-44

Four spanning trees of G:

Ch10-45

Exercise : 1, 8, 11

Thm 1 A simple graph is connected if and only if it has

a spanning tree.
Exercise : 24, 25

Example 3 Use depth-first

search to find a spanning tree

for the graph.

Sol. (arbitrarily start with the vertex f)

Ch10-46

Depth-First Search (DFS)

Ch10-47

Example 4 (承上題)

The edges selected by DFS of a graph are called tree

edges. All other edges of the graph must connect a vertex

to an ancestor or descendant of this vertex in the tree.

These edges are called back edges.

The tree edges (red)

and back edges (black)



Procedure DFS(G: connected graph with vertices v1, v2, …, vn)

T := tree consisting only of the vertex v1

visit(v1)

procedure visit(v: vertex of G)

for each vertex w adjacent to v and not yet in T

begin

add vertex w and edge {v, w} to T

visit(w)

end

Algorithm 1 (Depth-First Search)

Ch10-48

Exercise : 13

Example 5 Use breadth-first search

to find a spanning tree

for the graph.

Sol. (arbitrarily start with the vertex e)

Ch10-49

Breadth-First Search (BFS)

Procedure BFS(G: connected graph with vertices v1, v2, …, vn)

T := tree consisting only of vertex v1

L := empty list

put v1 in the list L of unprocessed vertices

while L is not empty

begin

remove the first vertex v from L

for each neighbor w of v

if w is not in L and not in T then

begin

add w to the end of the list L

add w and edge {v, w} to T

end

end

Algorithm 2 (Breadth-First Search)

Ch10-50

Exercise : 16

There are problems that can be solved only by performing an

exhaustive (徹底的) search of all possible solutions.

Ch10-51

Backtracking Applications

Decision tree: each internal vertex represents a decision, and

each leaf is a possible solution.

To find a solution via backtracking: 在 decision tree上由root做
一連串的decision走到leaf，若leaf不是solution，或整個子樹
檢查完未找到解，則退到上層parent，改找另一個子樹。

Ch10-52

Example 6 (Graph Colorings) How can backtracking be

used to decide whether the following graph can be colored

using 3 colors?

Sol.

Ch10-53

Example 7

(The n-Queens Problem)

The n-queens problem asks how

n queens can be placed on an nn

chessboard so that no two queens

can attack on another. How can

backtracking be used to solve the

n-queens problem.

Sol. 以n=4為例

3rd column不能放

Ch10-54

Example 8 (Sum of Subsets)

Give a set S of positive integers x1, x2, …, xn, find a subset

of S that has M as its sum. How can backtracking be used to

solve this problem.

Sol.

S = {31, 27, 15, 11, 7, 5}

M = 39

Exercise : 30

Ch10-55

Depth-First Search in Directed Graphs

Example 9 What is the output of DFS given the graph G?

Sol.

Ch10-56

10.5 Minimum Spanning Trees

G: connected weighted graph (each edge has an weight  0)

Def. minimum spanning tree of G: a spanning tree of G

with smallest sum of weights of its edges.

Algorithms for Minimum Spanning Trees

Procedure Prim(G: connected weighted undirected graph with n vertices)

T := a minimum-weight edge

for i := 1 to n-2

begin

e := an edge of minimum weight incident to a vertex in T and not

forming a simple circuit in T if added to T

T := T with e added

end {T is a minimum spanning tree of G}

Algorithm 1 (Prim’s Algorithm)

Ch10-57

Example 2 Use Prim’s

algorithm to find a minimum

spanning tree of G.

Sol.

Exercise: 3

(過程中維持只有一個tree)

Ch10-58

Procedure Kruskal(G: connected weighted undirected graph with n vertices)

T := empty graph

for i := 1 to n-1

begin

e := any edge in G with smallest weight that does not form a simple

circuit when added to T

T := T with e added

end {T is a minimum spanning tree of G}

Algorithm 2 (Kruskal Algorithm)

Ch10-59

Example 3 Use Kruskal

algorithm to find a minimum

spanning tree of G.

Sol.

Exercise: 7

(過程中tree通常會有好幾個)

