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10.1 Introduction to Trees

Def 1 Atree is a connected undirected graph with no
simple circuits.

Example 1. Which of the graphs are trees?

b a H ¢l b

s

Sol: G4, G,
Note. EEiEconnectedBJE#E, FLEERL forest
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Thm 1. Any undirected graph is a tree if and only If

there Is a unigue simple path between any two of
Its vertices.

Def 2. Arooted tree Is a tree in which one vertex has
been designed as the root and every edge is
directed away from the root. (grzae ki)

Example

T With root a With root ¢
c

a
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a Is the parent of b, b is the child of a,

c, d, e are siblings,

a, b, d are ancestors of f

c,d, e, f,gare descendants of b

c,e f, g are leaves of the tree (deg=1)

a, b, d are internal vertices of the tree
(at least one child)

subtree with d as Its root: ‘d/\

f 9
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Def 3 Arooted tree Is called an m-ary tree If every
Internal vetex has no more than m children. The tree
Is called a full m-ary tree If every internal vertex has
exactly m children. An m-ary tree with m=2 is called
a binary tree.

Example 3

full binary tree full 3-ary tree full 5-ary tree not full 3-ary tree

Ch10-5



left child of a

left subtree of a

right child of ¢

right subtree of a
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Properties of Trees

Thm 2. A tree with n vertices has n-1 edges.
Pf. (by induction on n)

n=1 :K;isthe only tree of order 1, |E(K;)| = 0. ok
Assume the result is true for every trees of order n = k.

Let T be a tree of order n = k+1, v be a leaf of T,
and w be the parent of v.

Let T " be the tree T-{v}.

~|V(T ") =k, and |E(T ’)] = k=1 by the induction
hypothesis.

= |[E(T)| =K

By induction, the result is true for all trees. ,,

Ch10-7



Thm 3. A full m-ary tree with 1 internal vertices
contains n=mi + 1 vertices.

Pf. Every vertex, except the root, is the child of an internal vertex.
Each internal vertex has m children.

— there are mi +1 vertices in the tree

Exercise: 19

Cor. A full m-ary tree with n vertices contains
(n—1)/m internal vertices, and hence
n—(n—-1)/m=((m-1)n+1)/m leaves.
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Def: The level of a vertex v in a rooted tree is the
length of the unique path from the root to this vertex.
The level of the root I1s defined to be zero.

The height of a rooted tree Is the maximum of the
levels of vertices.

Example 10. level

height=4

Ch10-9



" J
Def: Arooted m-ary tree of height h is balanced if all
leaves are at levels h or h—1.

Example 11 Which of the rooted trees shown below
are balanced?

K LR 5B

Sol. Ty, T3

Thm 5. There are at most m" leaves in an m-ary tree
of height h.
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Def: A complete m-ary tree is a full m-ary tree,
where every leaf is at the same level.

Ex 28 How many vertices and how many leaves does
a complete m-ary tree of height h have?

Sol.
# of vertices = 1+m+m?+... +m" = (m"*+1-1)/(m-1)

# of leaves = m"
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10.2 Applications of Trees

Binary Search Trees

Goal: Implement a searching algorithm that finds
items efficiently when the items are totally ordered.

Binary Search Tree: Binary tree + each child of a
vertex Is designed as a right or left child, and each
vertex v is labeled with a key label(v), which is one of

the items.

Note: label(v) > label(w) if wis in the left subtree of v
and label(v) < label(w) if wis in the right subtree of v
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Example 1 Form a binary search tree for the words

mat
geo

Sol.

nematics, physics, geography, zoology, meteorology,
ogy, psychology, and chemistry (using alphabetical order).

mathematics mathematics mathematics mathematics
2
physics
physics geography  physics geography
zoology
zoology > mathematics
physics > mathematics geography < mathematics zoology > physics
mathematics mathematics mathematics mathematies
geography geography geography
physics = physics = physics physics
geography
ad o J (™
geology zoology geolog) zoology zoology
meteorology zoology meteorology meteorology Lhcmistr)/
psychology meteorology psychology
psychology > mathematics
meteorology > mathematics geology < mathematics psychology > physics chemistry < mathematics
meteorology < physics geology > geography psychology < zoology chemistry < geography
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Al g orithm 1 (Locating and Adding Items to a Binary Search Tree.)

Procedure insertion(T: binary search tree, X: item)
v:=rootof T
{a vertex not present in T has the value null}
while v = null and label(v) = x
begin

If X < label(v) then

If left child of v = null then v:=left child of v
else add new vertex as a left child of v and set v := null

else
If right child of v = null then v:=right child of v
else add new vertex as a right child of v and set v := null

end
If root of T = null then add a vertex v to the tree and label it with x

else if v is null or label(v) = x then label new vertex with x and
let v be this new vertex

{v = location of x}
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Example 2 Use Algorithm 1 to insert the word
oceanography into the binary search tree in Example 1.

Sol. label(v) = mathematics < oceanography

mathematics label(v) = physics > oceanography

label(v) = meteorology < oceanography

geography physics

meteordlogy 200l0gy

chemistry  geology

oceanography  psychology

Exercise: 1,3
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Decision Trees

A rooted tree in which each internal vertex corresponds
to a decision, with a subtree at these vertices for each
possible outcome of the decision, is called a decision
tree.

Example 3 Suppose there are seven coins, all with the
same weight, and a counterfeit (#:%) coin that weights less
than the others. How many weighings (# %) are necessary
using a balance scale (#) to determine which of the eight
coins is the counterfeit one? Give an algorithm for finding
this counterfeit coin.
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Sol. MERF, AIREEE. AE

Need 8 leaves = ZE/DEF

0JOlO) l @O®

Lighter @ @ @ Balance @ @ @ Lighter

o 8 e e T
S| =D = = S=|<=>

[T
o
|

L& — 3-ary tree

AR R

~y

-
limli
[

(D Lighter  Balance (2) Lighter (@ Lighter  Balance (8) Lighter @ Lighter  Balance (3) Lighter
@ @ @ @ Impossible ® @ @ @
Exercise: 7
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Example 4 A decision tree that orders the elements of the
list a, b, C.

Sol.

a:b

1;9/// \\\<ié

aie b:c

ai;// a<c bi?// b<c

XL
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Prefix Codes

Problem: Using bit strings to encode the letter of the
English alphabet (=4 X/h%)

— each letter needs a bit string of length 5 (H 24 < 26 < 2°)

= Is it possible to find a coding scheme of these letter
such that when data are coded, fewer bits are used?

— Encode letters using varying numbers of bits.

— Some methods must be used to determine where the
bits for each character start and end.

= Prefix codes: Codes with the property that the bit string
for a letter never occurs as the first part of the bit string
for another letter.
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Example: (not prefix code)
e:0, a: 1, t:01
The string 0101 could correspond to eat, tea, eaea, or tt.

Example: (prefix code)
e:0, a: 10, t:11
The string 10110 is the encoding of ate.
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A prefix code can be represented using a binary tree.
character: the label of the leaf
edge label: left child — 0, right child > 1
The bit string used to encode a character is the sequence

of labels of the edges in the unique path from the root to
the leaf that has this character as its label.

Example: #rootiE#E, Zlleafslt, EfE
encode decode
e: 0 ‘1111’101‘1109
a: 10 £ LéJ n L'é
t 110
n: 1110 = sane
s: 1111

Exercise:; 22
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Huffman Coding (data compressionEEI 8)

Input the frequencies of symbols in a string and output
a prefix code that encodes the string using the fewest
possible bits, among all possible binary prefix codes for
these symbols.

—BAE AR ZINLEL, labelFi 2 & {Esymbol,

i &% /DM F R RR{E symbol#E & i —Esubtree,
FHEIE—=,

15 i ME AR E subtreedd & Bk —{Esubtree, ...
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Algorithm 2 (Huffman Coding)

Procedure Huffman(C: symbols a; with frequenciesw;, i=1, ..., n)
F := forest of n rooted trees, each consisting of the single vertex a;
and assigned weighted w;
while F is not a tree
begin
Replace the rooted trees T and 7" of least weights from F with
w(T) > w(7”) with a tree having a new root that has T as its
left subtree and 7" as its right subtree. Label the new edge to T
with 0 and the new edge to 7" with 1.

Assign w(T)+w(7") as the weight of the new tree.
end
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Example 5 Use Huffman coding to encode the following

symbols with the frequencies listed:

A: 0.08, B: 0.10, C: 0.12, D: 0.15, E: 0.20, F: 0.35.
What is the average number of bits used to encode a
character?

Sol:
1. TEE
2. The average number of bits is:
F{Esymbol EEx 583 g2

= 3x0.08+ 3x0.10+ 3x0.12+ 3x0.15+2x0.20+2x0.35

=2.45

Exercise : 23
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0.08
L ]
A

0,10
L]
B
0.12 15
L ] L ]
C D
(.18
0 ]
B A
0.27
0
D

(L38

012 [}
®
C
0.8
0 |
B A
0.20
®
E 0
B]
0.35
]
E

1.00

0.27

0.62

0.38

Initial
forest

Step 1

Step 2

Step 5
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10.3 Tree Traversal

We need procedures for visiting each vertex of an ordered
rooted tree to access data.

Universal Address Systems

Label vertices:

1.root —» 0, its k children —» 1, 2, ..., k (from left to right)
2.For each vertex v at level n with label A,

its r children —» A1, A2, ..., Ar (from left to right).

We can totally order the vertices using the lexicographic
ordering of their labels in the universal address system.

X1 X500 oo Xy <Y1 You oY

If there is an I, 0<i1<n, with X;=y;, X,=Y,, ..., Xi1=Yi1, and x<y;;
or if n<m and x;=y; for I=1, 2, ..., n.
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Example 1

0

| 2 3 4 5
3.1 5.1
Ed 12 13 3.2 41 = 82 53
- 9313
3.1.1 3.1.2 5.1.1
1.2.1 3.1.23
3.1.2.2 1.24

The lexicographic ordering is:
0<1<1.1<1.2<13<2<3<31<31.1<31.2<31.21<31.22<3.1.23<

3.1.24<313<32<4<41<5<51<51.1<5.2<5.3
Exercise : 2 |choor
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Traversal Algorithms

Preorder traversal (BiF)

Step 1: Visit r

Preorder traversal

Step 2: Step 3: Stepn + 1:
Visit 7 Visit T, Visit 7,
in preorder in preorder in preorder
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Example 2. In which order does a preorder traversal visit
the vertices in the ordered rooted tree T shown below?

Sol: *

booopg o b Ff & A wp F om
" &% & = \- *« ® ® ® =° w @
I/ .
m oo op
h e J & '» EF r f @ o om k|
L * @ ] . @ ] . @ . @ | I * @ .C:
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Algorithm 1 (preorder Traversal)

Procedure preorder(T: ordered rooted tree)

r:=rootof T

listr

for each child c of r from left to right

begin
T(c) :=subtree with c as its root
preorder(T(c))

end

Exercise : 8
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Inorder traversal(4 %)

Step 2: Visit r

Inorder traversal

Step 1: Step 3: Stepn + 1:
Visit 7} in Visit 75 in Visit 7, in
inorder inorder inorder

Ch10-31



" J
Example 3. In which order does a preorder traversal visit
the vertices in the ordered rooted tree T shown below?

b

Sol: A : “ /I\

/
25 g \
'
J
/ \
»
n " »
[} f a ¢ g d h i
o L ] L ] o N L ] L J
I3 g
¢ J
i / / ™
J \.
n T , )

-
3
-~
-
-
ae
e
-
=

.
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Algorithm 2 (inorder Traversal)

Procedure inorder(T: ordered rooted tree)
r:=rootof T
If ris a leaf then list r
else
begin
| := first child of r from left to right
T(l) := subtree with | as its root
inorder(T(l))
list r
for each child c of r except for | from left to right
T(c) := subtree with c as its root
Inorder(T(c))

end
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Postorder traversal(i& %)

Step n + 1: Visit r

Postorder traversal

Step 1: Step 2: Step n:
Visit 7 Visit 7, Visit 7,
in postorder  in postorder in postorder
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Example 4. In which order does a preorder traversal visit
the vertices in the ordered rooted tree T shown below?

Sol: /\ N
A P I\
/N 7 % 7
£y & %
440
n o p
¢ /S & 2 it d
/ L ] L ] /‘. ® e L ] L ]
VA AN

ke (7] m 2 R ‘
0/._0000.0000.0
/N

Ichp

! n R I d a
L J S ° L J L ] L J - L ]
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Algorithm 3 (pPostorder Traversal)

Procedure postorder(T: ordered rooted tree)

r:=rootof T

for each child c of r from left to right

begin
T(c) := subtree with c as its root
postorder(T(c))

end

listr
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BB SRR E | (RGN EEFIHENE,
Preorder: curves — X @18z ELRFTilistEZ & 24

Inorder: curve®— X E1E—{AleaffFFilistE, T = X@E—{Einternal &1 24
B Ftliste
Postorder: curvesx®— K@ 8% ELFTLlistE% & 2L

Preorder:
a,b,dhel]cfogK

Inorder:
h,d, b 1,e],afcKk(d

Postorder:
h,d, 1,],e b, fkagca
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Infix, Prefix, and Postfix Notation

We can represent complicated expressions, such as compound
propositions, combinations of sets, and arithmetic expressions

using ordered rooted trees.

Example 1 Find the ordered rooted tree for

Sol.

leaf:
variable
Internal vertex:
operation on
its left and right
subtrees

(x+y)T2)+((x=4)/3). (TRTRIA)

/\

ANAN

/\
/\

ANA
/\
AYA
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The following binary trees represent the expressions:
(x+y)/(x+3), (x+(y/x))+3, x+(y/(x+3)).
All their inorder traversals lead to x+y/x+3 = ambiguous

| /N / \
2 A VAN
ANVANERVAN /\

X

Infix form: An expression obtained when we traverse its
rooted tree with inorder.

Prefix form: ... ... by preorder. (also named Polish notation)

Postfix form: ... ... by postorder. (reverse Polish notation)
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Example 6 What is the prefix form for ((x+y)T2)+((x—4)/3)?

Sol. / \

/\ /\ +T+xy2/-x43
/N /N

Example 8 What is the postfix form of the expression
((x+y) T2)+((x—=4)/3)?

Sol.
X y+2Tx4-3/+

Note. An expression in prefix form or postfix form is
unambiguous, so no parentheses are needed.
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Example 7 What is the value of the prefix expression
+-*235/1234?

Sol. ¥+ = * 2 3 5 [/ 1t 2 3 4
L J
EEE?:”EE%: ﬂ%%_1ﬁﬂjﬁﬂ’] 2173=18
BERAINAEMHRESRF
BILEE, EHHERREREMLE + - % 2.3 5 /8 4
IRILEEHE
8/4=2
+ — * 2 3 §5 2
2%3=06
+ e 6 5 2
1 |
6-5=1
a 1 12
1 |
|+2=3

Value of expression: 3
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Example 9 What is the value of the postfix expression
723*-47T93/+?

Sol. T 2 3 W = 4 T & 3 / +
| |

18 H AR (AN*) £ iZ M R B 24 =F

MItbER, EFEGRIMEELA 7T 86 - 4 T 9 3 I' =+

B, RIELZEHE,

1+3=4
Value of expression: 4
Ch10-42
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Example 10 Find the ordered rooted tree representing the

compound proposition (—(pAQ)) <> (—pv—Qq). Then use this
rooted tree to find the prefix, postfix, and infix forms of this

expression.
Sol.

/NTT ] AN
VAN VAN
/\

/N L
prefix:<>—=Apgqv—-p—q Infix: (—(pAQ)) <> ((—p)v(—0))
postiix: pgA—-p—-Qg—vVv < Exercise : 17, 23, 24

P q
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10.4 Spanning Trees

Introduction

Def. Let G be a simple graph. A spanning tree of G is a
subgraph of G that is a tree containing every vertex of G.

Example 1 Find a spanning tree of G.

a b ¢ d

Sol.

Remove an edge from any circuit.
(repeat until no circuit exists)

Edge removed: {a, ¢}

(a) (b) (©) Ch10-44



" J
Four spanning trees of G:

a ¢ d a b c d

|

Exercise: 1, 8, 11

Thm 1 A simple graph is connected if and only if it has
a spanning tree.

Exercise : 24, 25
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Depth-First Search (DFS)

Example 3 Use depth-first
search to find a spanning tree
for the graph.

~.

a

o

b g

Sol. (arbitrarily start with the vertex f)
7 f /

h

(a) (b) (c) (d) (e)
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The edges selected by DFS of a graph are called tree
edges. All other edges of the graph must connect a vertex

to an ancestor or descendant of this vertex in the tree.
These edges are called back edges.

Example 4 (& L&

d i

~.

b

The tree edges (red)
and back edges (black)
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Algorithm 1 (Depth-First Search)

Procedure DFS(G: connected graph with vertices v;, v, ..., V)
T := tree consisting only of the vertex v,
visit(v,)
procedure visit(v: vertex of G)
for each vertex w adjacenttovand notyetin T
begin
add vertex w and edge {v,w}to T
visit(w)
end

Exercise : 13
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Breadth-First Search (BFS) !

S
9 >

Example 5 Use breadth-first search dp——¢—9 g
to find a spanning tree

for the graph. hi R

Sol. (arbitrarily start with the vertex e)

¢
®

/ m
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Algorithm 2 (Breadth-First Search)
Procedure BFS(G: connected graph with vertices vy, v,, ..., V,)
T :=tree consisting only of vertex v,

L := empty list
put v, in the list L of unprocessed vertices
while L is not empty
begin
remove the first vertex v from L
for each neighbor w of v
If wisnotinLandnotinT then
begin
add w to the end of the list L
add w and edge {v,w}to T

end :
Exercise : 16
end |
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Backtracking Applications

There are problems that can be solved only by performing an
exhaustive (#E#) search of all possible solutions.

Decision tree: each internal vertex represents a decision, and
each leaf is a possible solution.

To find a solution via backtracking: £ decision tree_t FHrootf
— & fdecisionzEZlleaf, FHleafAsZsolution, B{EE{EF15
A sE AR, HER| L Eparent, tiiks—1{E-FHi,
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Example 6 (Graph Colorings) How can backtracking be

used to decide whether the following graph can be colored
using 3 colors?

a red
. s Sol.
M a red, b blue
a b C / \
a red, b blue, ¢ red a red, b blue, ¢ green
a red, b blue, ¢ red, d green a red, b blue, ¢ green, d red

\

a red, b blue, ¢ green, d red, e green
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Example 7 Sol. Lin=4%15l
(The n-Queens Problem)

The n-queens problem asks how

n queens can be placed on an nxn
chessboard so that no two queens

can attack on another. How can : X
backtracking be used to solve the
n-queens problem. < X
X
. X X
3rd columnFRERR / % T
X X

X

X represents a queen X
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Example 8 (Sum of Subsets)

Give a set S of positive integers Xy, X, ..

X, find a subset

s \ny

of S that has M as its sum. How can backtracking be used to
solve this problem.

Sol.

S={31,27,15,11,7, 5}

M =39

Exercise : 30

Sum 0
Sum = 31 Sum = ’)7
{31, 7 131.5} 12711} {27, 7}
Sum = 28 Sum = 36 Sum =38 Sum = 34
{27; 1.5}

Sum = 39 Ch10-54
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Depth-First Search in Directed Graphs

Example 9 What is the output of DFS given the graph G?

i
-

a
[

Sol.

(a)

(b)

e/

Ch10-55



" I
10.5 Minimum Spanning Trees

G: connected weighted graph (each edge has an weight > 0)

Def. minimum spanning tree of G: a spanning tree of G
with smallest sum of weights of its edges.

Algorithms for Minimum Spanning Trees

Algorithm 1 (Prim’s Algorithm)
Procedure Prim(G: connected weighted undirected graph with n vertices)
T := a minimum-weight edge
fori:=1ton-2
begin
e .= an edge of minimum weight incident to a vertex in T and not
forming asimple circuit in T ifaddedto T
T := T with e added
end {T is a minimum spanning tree of G}
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Example 2 Use Prim’s

algorithm to find a minimum

spanning tree of G.

Sol.

Choice

1

O o0~ B W

— —
—_—

Edge

{b, f}
{a, b}
{f,Jj}
{a, e}
{iJ}
{f, g}
{c, g}
{c, d}
g h}
{h, )
{k, [}

Total:

Q

4) b 3 c 1 d
12 O P
] 0} 5
f g
4 W 3 8} 3 &
2 4 3
3 3 1
L ® =)
7 k i

(BIEPHEFR A —{Etree)

Exercise: 3
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Algorithm 2 (Kruskal Algorithm)
Procedure Kruskal(G: connected weighted undirected graph with n vertices)
T := empty graph
fori:=1ton-1
begin
e :=any edge in G with smallest weight that does not form a simple
circuit when added to T

T := T with e added
end {T is a minimum spanning tree of G}
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Example 3 Use Kruskal

algorithm to find a minimum

spanning tree of G.

Sol.

Choice

p— —
-

Edeec

o

{C’ d}
{k, 1}
{b, f}
{c. g}
{a, b}
{fJjl
{b, ¢}
{J, k}
{g, h}
{6, )}
{a, e}

Total:

a 2 b 3 % 1 d
3 | 2 5
(X < fo 3 go;oh
4 2 4 3
3 3 1
[ A 2 ®
i I k [

(BFEtreeBEZ HIFHE)

Exercise: 7
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